Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 110
1.
Article En | MEDLINE | ID: mdl-38565270

Molecular genetic approaches in small model organisms like Drosophila have helped to elucidate fundamental principles of neuronal cell biology. Much less is understood about glial cells, although interest in using invertebrate preparations to define their in vivo functions has increased significantly in recent years. This review focuses on our current understanding of the three major neuron-associated glial cell types found in the Drosophila central nervous system (CNS)-astrocytes, cortex glia, and ensheathing glia. Together, these cells act like mammalian astrocytes and microglia; they associate closely with neurons including surrounding neuronal cell bodies and proximal neurites, regulate synapses, and engulf neuronal debris. Exciting recent work has shown critical roles for these CNS glial cells in neural circuit formation, function, plasticity, and pathology. As we gain a more firm molecular and cellular understanding of how Drosophila CNS glial cells interact with neurons, it is clear that they share significant molecular and functional attributes with mammalian glia and will serve as an excellent platform for mechanistic studies of glial function.

2.
Ecology ; 105(5): e4279, 2024 May.
Article En | MEDLINE | ID: mdl-38501232

The role of atmospheric humidity in the evolution of endotherms' thermoregulatory performance remains largely unexplored, despite the fact that elevated humidity is known to impede evaporative cooling capacity. Using a phylogenetically informed comparative framework, we tested the hypothesis that pronounced hyperthermia tolerance among birds occupying humid lowlands evolved to reduce the impact of humidity-impeded scope for evaporative heat dissipation by comparing heat tolerance limits (HTLs; maximum tolerable air temperature), maximum body temperatures (Tbmax), and associated thermoregulatory variables in humid (19.2 g H2O m-3) versus dry (1.1 g H2O m-3) air among 30 species from three climatically distinct sites (arid, mesic montane, and humid lowland). Humidity-associated decreases in evaporative water loss and resting metabolic rate were 27%-38% and 21%-27%, respectively, and did not differ significantly between sites. Decreases in HTLs were significantly larger among arid-zone (mean ± SD = 3.13 ± 1.12°C) and montane species (2.44 ± 1.0°C) compared to lowland species (1.23 ± 1.34°C), with more pronounced hyperthermia among lowland (Tbmax = 46.26 ± 0.48°C) and montane birds (Tbmax = 46.19 ± 0.92°C) compared to arid-zone species (45.23 ± 0.24°C). Our findings reveal a functional link between facultative hyperthermia and humidity-related constraints on evaporative cooling, providing novel insights into how hygric and thermal environments interact to constrain avian performance during hot weather. Moreover, the macrophysiological patterns we report provide further support for the concept of a continuum from thermal specialization to thermal generalization among endotherms, with adaptive variation in body temperature correlated with prevailing climatic conditions.


Biological Evolution , Birds , Humidity , Thermotolerance , Animals , Thermotolerance/physiology , Birds/physiology , Body Temperature Regulation/physiology , Atmosphere , Hot Temperature
3.
Neuron ; 112(1): 93-112.e10, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38096817

Astrocytes play crucial roles in regulating neural circuit function by forming a dense network of synapse-associated membrane specializations, but signaling pathways regulating astrocyte morphogenesis remain poorly defined. Here, we show the Drosophila lipid-binding G protein-coupled receptor (GPCR) Tre1 is required for astrocytes to establish their intricate morphology in vivo. The lipid phosphate phosphatases Wunen/Wunen2 also regulate astrocyte morphology and, via Tre1, mediate astrocyte-astrocyte competition for growth-promoting lipids. Loss of s1pr1, the functional analog of Tre1 in zebrafish, disrupts astrocyte process elaboration, and live imaging and pharmacology demonstrate that S1pr1 balances proper astrocyte process extension/retraction dynamics during growth. Loss of Tre1 in flies or S1pr1 in zebrafish results in defects in simple assays of motor behavior. Tre1 and S1pr1 are thus potent evolutionarily conserved regulators of the elaboration of astrocyte morphological complexity and, ultimately, astrocyte control of behavior.


Drosophila Proteins , Zebrafish , Animals , Astrocytes/metabolism , Drosophila/metabolism , Drosophila Proteins/metabolism , Phospholipids/metabolism , Receptors, G-Protein-Coupled/metabolism , Sphingosine-1-Phosphate Receptors/metabolism
4.
J Exp Biol ; 226(15)2023 08 01.
Article En | MEDLINE | ID: mdl-37470124

Survival and reproduction of endotherms depend on their ability to balance energy and water exchange with their environment, avoiding lethal deficits and maximising gains for growth and reproduction. At high environmental temperatures, diurnal endotherms maintain body temperature (Tb) below lethal limits via physiological and behavioural adjustments. Accurate models of these processes are crucial for predicting effects of climate variability on avifauna. We evaluated the performance of a biophysical model (NicheMapR) for predicting evaporative water loss (EWL), resting metabolic rate (RMR) and Tb at environmental temperatures approaching or exceeding normothermic Tb for three arid-zone birds: southern yellow-billed hornbill (Tockus leucomelas), southern pied babbler (Turdoides bicolor) and southern fiscal (Lanius collaris). We simulated metabolic chamber conditions and compared model outputs with thermal physiology data collected at air temperatures (Tair) between 10 and 50°C. Additionally, we determined the minimum data needed to accurately model diurnal birds' thermoregulatory responses to Tair using sensitivity analyses. Predicted EWL, metabolic rate and Tb corresponded tightly with observed values across Tair, with only minor discrepancies for EWL in two species at Tair≈35°C. Importantly, the model captured responses at Tair=30-40°C, a range spanning threshold values for sublethal fitness costs associated with sustained hot weather in arid-zone birds. Our findings confirm how taxon-specific parameters together with biologically relevant morphological data can accurately model avian thermoregulatory responses to heat. Biophysical models can be used as a non-invasive way to predict species' sensitivity to climate, accounting for organismal (e.g. physiology) and environmental factors (e.g. microclimates).


Hot Temperature , Passeriformes , Animals , Body Temperature Regulation/physiology , Body Temperature/physiology , Passeriformes/physiology , Desert Climate
5.
Integr Comp Biol ; 63(5): 1028-1038, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37156524

Many birds reduce rest-phase energy demands through heterothermy, physiological responses involving facultative, reversible reductions in metabolic rate and body temperature (Tb). Here, we review the phylogenetic distribution and ecological contexts of avian heterothermy. Heterothermy has been reported in 140 species representing 15 orders and 39 families. Recent work supports the view that deep heterothermy is most pronounced in phylogenetically older taxa whereas heterothermy in passerines and other recently diverged taxa is shallower and confined to minimum Tb > 20°C. The reasons why deep heterothermy is absent in passerines remain unclear; we speculate an evolutionary trade-off may exist between the capacity to achieve low heterothermic Tb and the tolerance of hyperthermic Tb. Inter- and intraspecific variation in heterothermy is correlated with factors including foraging ecology (e.g., territoriality and defense of food resources among hummingbirds), food availability and foraging opportunities (e.g., lunar phase predicts torpor use in caprimulgids), and predation risk. Heterothermy also plays a major role before and during migration. Emerging questions include the magnitude of energy savings associated with heterothermy among free-ranging birds, the role phylogenetic variation in the capacity for heterothermy has played in evolutionary radiations into extreme habitats, and how the capacity for heterothermy affects avian vulnerability to rapid anthropogenic climate change.


Body Temperature Regulation , Torpor , Humans , Animals , Body Temperature Regulation/physiology , Phylogeny , Body Temperature , Torpor/physiology , Biological Evolution
6.
J Cell Biol ; 222(1)2023 01 02.
Article En | MEDLINE | ID: mdl-36399182

Maintaining long, energetically demanding axons throughout the life of an animal is a major challenge for the nervous system. Specialized glia ensheathe axons and support their function and integrity throughout life, but glial support mechanisms remain poorly defined. Here, we identified a collection of secreted and transmembrane molecules required in glia for long-term axon survival in vivo. We showed that the majority of components of the TGFß superfamily are required in glia for sensory neuron maintenance but not glial ensheathment of axons. In the absence of glial TGFß signaling, neurons undergo age-dependent degeneration that can be rescued either by genetic blockade of Wallerian degeneration or caspase-dependent death. Blockade of glial TGFß signaling results in increased ATP in glia that can be mimicked by enhancing glial mitochondrial biogenesis or suppressing glial monocarboxylate transporter function. We propose that glial TGFß signaling supports axon survival and suppresses neurodegeneration through promoting glial metabolic support of neurons.


Axons , Neuroglia , Transforming Growth Factor beta , Animals , Axons/metabolism , Neuroglia/metabolism , Peripheral Nerves/cytology , Sensory Receptor Cells , Transforming Growth Factor beta/metabolism , Drosophila melanogaster , Organelle Biogenesis , Monocarboxylic Acid Transporters/metabolism
7.
Development ; 149(23)2022 12 01.
Article En | MEDLINE | ID: mdl-36355066

Most invertebrate axons and small-caliber axons in mammalian peripheral nerves are unmyelinated but still ensheathed by glia. Here, we use Drosophila wrapping glia to study the development and function of non-myelinating axon ensheathment, which is poorly understood. Selective ablation of these glia from peripheral nerves severely impaired larval locomotor behavior. In an in vivo RNA interference screen to identify glial genes required for axon ensheathment, we identified the conserved receptor tyrosine kinase Discoidin domain receptor (Ddr). In larval peripheral nerves, loss of Ddr resulted in severely reduced ensheathment of axons and reduced axon caliber, and we found a strong dominant genetic interaction between Ddr and the type XV/XVIII collagen Multiplexin (Mp), suggesting that Ddr functions as a collagen receptor to drive axon wrapping. In adult nerves, loss of Ddr decreased long-term survival of sensory neurons and significantly reduced axon caliber without overtly affecting ensheathment. Our data establish essential roles for non-myelinating glia in nerve development, maintenance and function, and identify Ddr as a key regulator of axon-glia interactions during ensheathment and establishment of axon caliber.


Axons , Drosophila Proteins , Animals , Discoidin Domain Receptors , Axons/physiology , Neuroglia , Drosophila Proteins/genetics , Peripheral Nerves , Drosophila , Mammals
8.
J Exp Biol ; 225(13)2022 07 01.
Article En | MEDLINE | ID: mdl-35730660

Relationships between air temperature (Tair) and avian body temperature (Tb), resting metabolic rate (RMR) and evaporative water loss (EWL) during acute heat exposure can be quantified through respirometry using several approaches. One involves birds exposed to a stepped series of progressively increasing Tair setpoints for short periods (<20-30 min), whereas a second seeks to achieve steady-state conditions by exposing birds to a single Tair for longer periods (>1-2 h). To compare these two approaches, we measured Tb, RMR and EWL over Tair=28°C to 44°C in the dark-capped bulbul (Pycnonotus tricolor). The two protocols yielded indistinguishable values of Tb, RMR and EWL and related variables at most Tair values, revealing that both are appropriate for quantifying avian thermal physiology during heat exposure over the range of Tair in the present study. The stepped protocol, however, has several ethical and practical advantages.


Hot Temperature , Passeriformes , Animals , Body Temperature Regulation/physiology , Temperature , Water Loss, Insensible/physiology
9.
Proc Natl Acad Sci U S A ; 119(26): e2116645119, 2022 06 28.
Article En | MEDLINE | ID: mdl-35727970

Physiological performance declines precipitously at high body temperature (Tb), but little attention has been paid to adaptive variation in upper Tb limits among endotherms. We hypothesized that avian maximum tolerable Tb (Tbmax) has evolved in response to climate, with higher Tbmax in species exposed to high environmental heat loads or humidity-related constraints on evaporative heat dissipation. To test this hypothesis, we compared Tbmax and related variables among 53 bird species at multiple sites in South Africa with differing maximum air temperature (Tair) and humidity using a phylogenetically informed comparative framework. Birds in humid, lowland habitats had comparatively high Tbmax (mean ± SD = 45.60 ± 0.58 °C) and low normothermic Tb (Tbnorm), with a significantly greater capacity for hyperthermia (Tbmax - Tbnorm gradient = 5.84 ± 0.77 °C) compared with birds occupying cool montane (4.97 ± 0.99 °C) or hot arid (4.11 ± 0.84 °C) climates. Unexpectedly, Tbmax was significantly lower among desert birds (44.65 ± 0.60 °C), a surprising result in light of the functional importance of hyperthermia for water conservation. Our data reveal a macrophysiological pattern and support recent arguments that endotherms have evolved thermal generalization versus specialization analogous to the continuum among ectothermic animals. Specifically, a combination of modest hyperthermia tolerance and efficient evaporative cooling in desert birds is indicative of thermal specialization, whereas greater hyperthermia tolerance and less efficient evaporative cooling among species in humid lowland habitats suggest thermal generalization.


Birds , Body Temperature Regulation , Hot Temperature , Water Loss, Insensible , Animals , Basal Metabolism/physiology , Birds/physiology , Body Temperature Regulation/physiology , Humidity , South Africa , Water Loss, Insensible/physiology
10.
Curr Biol ; 32(9): 1895-1908.e5, 2022 05 09.
Article En | MEDLINE | ID: mdl-35303417

A precise balance between sleep and wakefulness is essential to sustain a good quality of life and optimal brain function. GABA is known to play a key and conserved role in sleep control, and GABAergic tone should, therefore, be tightly controlled in sleep circuits. Here, we examined the role of the astrocytic GABA transporter (GAT) in sleep regulation using Drosophila melanogaster. We found that a hypomorphic gat mutation (gat33-1) increased sleep amount, decreased sleep latency, and increased sleep consolidation at night. Interestingly, sleep defects were suppressed when gat33-1 was combined with a mutation disrupting wide-awake (wake), a gene that regulates the cell-surface levels of the GABAA receptor resistance to dieldrin (RDL) in the wake-promoting large ventral lateral neurons (l-LNvs). Moreover, RNAi knockdown of rdl and its modulators dnlg4 and wake in these circadian neurons also suppressed gat33-1 sleep phenotypes. Brain immunohistochemistry showed that GAT-expressing astrocytes were located near RDL-positive l-LNv cell bodies and dendritic processes. We concluded that astrocytic GAT decreases GABAergic tone and RDL activation in arousal-promoting LNvs, thus determining proper sleep amount and quality in Drosophila.


Drosophila Proteins , Drosophila , Animals , Astrocytes/metabolism , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , GABA Plasma Membrane Transport Proteins , GABAergic Neurons/metabolism , Neurons/physiology , Quality of Life , Receptors, GABA-A , Sleep/physiology
11.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article En | MEDLINE | ID: mdl-34686600

Drosophila is a powerful model in which to perform genetic screens, but screening assays that are both rapid and can be used to examine a wide variety of cellular and molecular pathways are limited. Drosophila offer an extensive toolbox of GFP-based transcriptional reporters, GFP-tagged proteins, and driver lines, which can be used to express GFP in numerous subpopulations of cells. Thus, a tool that can rapidly and quantitatively evaluate GFP levels in Drosophila tissue would provide a broadly applicable screening platform. We developed a GFP-based enzyme-linked immunosorbent assay (ELISA) that can detect GFP in Drosophila lysates collected from whole animals and dissected tissues across all stages of Drosophila development. We demonstrate that this assay can detect membrane-localized GFP in a variety of neuronal and glial populations and validate that it can identify genes that change the morphology of these cells, as well as changes in STAT and JNK transcriptional activity. We found that this assay can detect endogenously GFP-tagged proteins, including Draper, Cryptochrome, and the synaptic marker Brp. This approach is able to detect changes in Brp-GFP signal during developmental synaptic remodeling, and known genetic regulators of glial synaptic engulfment could be identified using this ELISA method. Finally, we used the assay to perform a small-scale screen, which identified Syntaxins as potential regulators of astrocyte-mediated synapse elimination. Together, these studies establish an ELISA as a rapid, easy, and quantitative in vivo screening method that can be used to assay a wide breadth of fundamental biological questions.


Drosophila/genetics , Enzyme-Linked Immunosorbent Assay/methods , Animals , Green Fluorescent Proteins/genetics , Neuroglia/metabolism , Reproducibility of Results
12.
Curr Opin Neurobiol ; 69: 247-255, 2021 08.
Article En | MEDLINE | ID: mdl-34175654

Axon degeneration is a prominent feature of the injured nervous system, occurs across neurological diseases, and drives functional loss in neural circuits. We have seen a paradigm shift in the last decade with the realization that injured axons are capable of actively driving their own destruction through the sterile-alpha and TIR motif containing 1 (SARM1) protein. Early studies of Wallerian degeneration highlighted a central role for NAD+ metabolites in axon survival, and this association has grown even stronger in recent years with a deeper understanding of SARM1 biology. Here, we review our current knowledge of SARM1 function in vivo and our evolving understanding of its complex architecture and regulation by injury-dependent changes in the local metabolic environment. The field is converging on a model whereby SARM1 acts as a sensor for metabolic changes that occur after injury and then drives catastrophic NAD+ loss to promote degeneration. However, a number of observations suggest that SARM1 biology is more complicated, and there remains much to learn about how SARM1 governs nervous system responses to injury or disease.


Armadillo Domain Proteins , Cytoskeletal Proteins , Animals , Armadillo Domain Proteins/genetics , Axons/pathology , Cytoskeletal Proteins/genetics , Mice , Mice, Knockout , Wallerian Degeneration
13.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article En | MEDLINE | ID: mdl-33972422

There is a tight association between mitochondrial dysfunction and neurodegenerative diseases and axons that are particularly vulnerable to degeneration, but how mitochondria are maintained in axons to support their physiology remains poorly defined. In an in vivo forward genetic screen for mutants altering axonal mitochondria, we identified tsg101 Neurons mutant for tsg101 exhibited an increase in mitochondrial number and decrease in mitochondrial size. TSG101 is best known as a component of the endosomal sorting complexes required for transport (ESCRT) complexes; however, loss of most other ESCRT components did not affect mitochondrial numbers or size, suggesting TSG101 regulates mitochondrial biology in a noncanonical, ESCRT-independent manner. The TSG101-mutant phenotype was not caused by lack of mitophagy, and we found that autophagy blockade was detrimental only to the mitochondria in the cell bodies, arguing mitophagy and autophagy are dispensable for the regulation of mitochondria number in axons. Interestingly, TSG101 mitochondrial phenotypes were instead caused by activation of PGC-1ɑ/Nrf2-dependent mitochondrial biogenesis, which was mTOR independent and TFEB dependent and required the mitochondrial fission-fusion machinery. Our work identifies a role for TSG101 in inhibiting mitochondrial biogenesis, which is essential for the maintenance of mitochondrial numbers and sizes, in the axonal compartment.


Axons/metabolism , DNA-Binding Proteins/genetics , Drosophila melanogaster/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Mitochondria/genetics , Organelle Biogenesis , Transcription Factors/genetics , Animals , Animals, Genetically Modified , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Female , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Humans , Male , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Mitophagy/genetics , Mutation , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Neurons/cytology , Neurons/metabolism , Transcription Factors/metabolism
14.
Neurobiol Dis ; 155: 105368, 2021 07.
Article En | MEDLINE | ID: mdl-33892050

Parkinson's disease (PD) is the most common form of neurodegenerative movement disorder, associated with profound loss of dopaminergic neurons from the basal ganglia. Though loss of dopaminergic neuron cell bodies from the substantia nigra pars compacta is a well-studied feature, atrophy and loss of their axons within the nigrostriatal tract is also emerging as an early event in disease progression. Genes that drive the Wallerian degeneration, like Sterile alpha and toll/interleukin-1 receptor motif containing (Sarm1), are excellent candidates for driving this axon degeneration, given similarities in the morphology of axon degeneration after axotomy and in PD. In the present study we assessed whether Sarm1 contributes to loss of dopaminergic projections in mouse models of PD. In Sarm1 deficient mice, we observed a significant delay in the degeneration of severed dopaminergic axons distal to a 6-OHDA lesion of the medial forebrain bundle (MFB) in the nigrostriatal tract, and an accompanying rescue of morphological, biochemical and behavioural phenotypes. However, we observed no difference compared to controls when striatal terminals were lesioned with 6-OHDA to induce a dying back form of neurodegeneration. Likewise, when PD phenotypes were induced using AAV-induced alpha-synuclein overexpression, we observed similar modest loss of dopaminergic terminals in Sarm1 knockouts and controls. Our data argues that axon degeneration after MFB lesion is Sarm1-dependent, but that other models for PD do not require Sarm1, or that Sarm1 acts with other redundant genetic pathways. This work adds to a growing body of evidence indicating Sarm1 contributes to some, but not all types of neurodegeneration, and supports the notion that while axon degeneration in many context appears morphologically similar, a diversity of axon degeneration programs exist.


Armadillo Domain Proteins/genetics , Axons/pathology , Cytoskeletal Proteins/genetics , Genetic Variation/physiology , Parkinsonian Disorders/genetics , Parkinsonian Disorders/pathology , Animals , Armadillo Domain Proteins/deficiency , Axons/metabolism , Cytoskeletal Proteins/deficiency , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nerve Degeneration/chemically induced , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Oxidopamine/toxicity , Parkinsonian Disorders/chemically induced
15.
Nature ; 592(7854): 414-420, 2021 04.
Article En | MEDLINE | ID: mdl-33828296

Critical periods-brief intervals during which neural circuits can be modified by activity-are necessary for proper neural circuit assembly. Extended critical periods are associated with neurodevelopmental disorders; however, the mechanisms that ensure timely critical period closure remain poorly understood1,2. Here we define a critical period in a developing Drosophila motor circuit and identify astrocytes as essential for proper critical period termination. During the critical period, changes in activity regulate dendrite length, complexity and connectivity of motor neurons. Astrocytes invaded the neuropil just before critical period closure3, and astrocyte ablation prolonged the critical period. Finally, we used a genetic screen to identify astrocyte-motor neuron signalling pathways that close the critical period, including Neuroligin-Neurexin signalling. Reduced signalling destabilized dendritic microtubules, increased dendrite dynamicity and impaired locomotor behaviour, underscoring the importance of critical period closure. Previous work defined astroglia as regulators of plasticity at individual synapses4; we show here that astrocytes also regulate motor circuit critical period closure to ensure proper locomotor behaviour.


Astrocytes/physiology , Critical Period, Psychological , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Efferent Pathways/physiology , Motor Neurons/physiology , Neuronal Plasticity/physiology , Animals , Cell Adhesion Molecules, Neuronal/metabolism , Dendrites/physiology , Female , Locomotion/physiology , Male , Microtubules/metabolism , Neuropil/physiology , Receptors, Cell Surface/metabolism , Signal Transduction , Synapses/physiology , Time Factors
16.
Nat Neurosci ; 24(3): 312-325, 2021 03.
Article En | MEDLINE | ID: mdl-33589835

Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them. We point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic-vs-neuroprotective or A1-vs-A2. We advocate, instead, that research on reactive astrocytes include assessment of multiple molecular and functional parameters-preferably in vivo-plus multivariate statistics and determination of impact on pathological hallmarks in relevant models. These guidelines may spur the discovery of astrocyte-based biomarkers as well as astrocyte-targeting therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glioprotective actions, and restore or augment their homeostatic, modulatory, and defensive functions.


Aging/pathology , Astrocytes/pathology , Brain/pathology , Spinal Cord/pathology , Animals , Brain Diseases/pathology , Brain Injuries/pathology , Humans , Spinal Cord Injuries/pathology
17.
Neuron ; 109(4): 576-596, 2021 02 17.
Article En | MEDLINE | ID: mdl-33385325

Astrocytes are a large and diverse population of morphologically complex cells that exist throughout nervous systems of multiple species. Progress over the last two decades has shown that astrocytes mediate developmental, physiological, and pathological processes. However, a long-standing open question is how astrocytes regulate neural circuits in ways that are behaviorally consequential. In this regard, we summarize recent studies using Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, and Mus musculus. The data reveal diverse astrocyte mechanisms operating in seconds or much longer timescales within neural circuits and shaping multiple behavioral outputs. We also refer to human diseases that have a known primary astrocytic basis. We suggest that including astrocytes in mechanistic, theoretical, and computational studies of neural circuits provides new perspectives to understand behavior, its regulation, and its disease-related manifestations.


Astrocytes/metabolism , Mental Disorders/metabolism , Nerve Net/metabolism , Neurons/metabolism , Animals , Astrocytes/pathology , Caenorhabditis elegans , Drosophila , Humans , Mental Disorders/genetics , Mental Disorders/pathology , Mice , Nerve Net/pathology , Neurons/pathology , Species Specificity , Zebrafish
18.
Neuron ; 109(3): 473-487.e5, 2021 02 03.
Article En | MEDLINE | ID: mdl-33296670

Nervous system injury and disease have broad effects on the functional connectivity of the nervous system, but how injury signals are spread across neural circuits remains unclear. We explored how axotomy changes the physiology of severed axons and adjacent uninjured "bystander" neurons in a simple in vivo nerve preparation. Within hours after injury, we observed suppression of axon transport in all axons, whether injured or not, and decreased mechano- and chemosensory signal transduction in uninjured bystander neurons. Unexpectedly, we found the axon death molecule dSarm, but not its NAD+ hydrolase activity, was required cell autonomously for these early changes in neuronal cell biology in bystander neurons, as were the voltage-gated calcium channel Cacophony (Cac) and the mitogen-activated protein kinase (MAPK) signaling cascade. Bystander neurons functionally recovered at later time points, while severed axons degenerated via α/Armadillo/Toll-interleukin receptor homology domain (dSarm)/Axundead signaling, and independently of Cac/MAPK. Interestingly, suppression of bystander neuron function required Draper/MEGF10 signaling in glia, indicating glial cells spread injury signals and actively suppress bystander neuron function. Our work identifies a new role for dSarm and glia in suppression of bystander neuron function after injury and defines two genetically and temporally separable phases of dSarm signaling in the injured nervous system.


Armadillo Domain Proteins/metabolism , Axons/metabolism , Cell Communication/physiology , Cytoskeletal Proteins/metabolism , Drosophila Proteins/metabolism , Neuroglia/metabolism , Neurons/metabolism , Signal Transduction/physiology , Animals , Axotomy , Calcium Channels/metabolism , Drosophila
19.
Elife ; 92020 12 07.
Article En | MEDLINE | ID: mdl-33284108

Astrocytes exhibit spatially-restricted near-membrane microdomain Ca2+transients in their fine processes. How these transients are generated and regulate brain function in vivo remains unclear. Here we show that Drosophila astrocytes exhibit spontaneous, activity-independent microdomain Ca2+ transients in their fine processes. Astrocyte microdomain Ca2+ transients are mediated by the TRP channel TrpML, stimulated by reactive oxygen species (ROS), and can be enhanced in frequency by the neurotransmitter tyramine via the TyrRII receptor. Interestingly, many astrocyte microdomain Ca2+ transients are closely associated with tracheal elements, which dynamically extend filopodia throughout the central nervous system (CNS) to deliver O2 and regulate gas exchange. Many astrocyte microdomain Ca2+ transients are spatio-temporally correlated with the initiation of tracheal filopodial retraction. Loss of TrpML leads to increased tracheal filopodial numbers, growth, and increased CNS ROS. We propose that local ROS production can activate astrocyte microdomain Ca2+ transients through TrpML, and that a subset of these microdomain transients promotes tracheal filopodial retraction and in turn modulate CNS gas exchange.


Astrocytes/metabolism , Calcium/metabolism , Drosophila Proteins/metabolism , Membrane Microdomains/physiology , Trachea/physiology , Transient Receptor Potential Channels/metabolism , Acetylcholine/pharmacology , Action Potentials/physiology , Animals , Calcium Signaling/physiology , Central Nervous System , Drosophila Proteins/genetics , Drosophila melanogaster , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Lanthanum/pharmacology , Mutation , Reactive Oxygen Species , Receptors, Biogenic Amine/genetics , Receptors, Biogenic Amine/metabolism , Tetrodotoxin/pharmacology , Transient Receptor Potential Channels/genetics , Tyramine/pharmacology , gamma-Aminobutyric Acid/pharmacology
20.
Nat Neurosci ; 23(10): 1297-1306, 2020 10.
Article En | MEDLINE | ID: mdl-32895565

How astrocytes grow and integrate into neural circuits remains poorly defined. Zebrafish are well suited for such investigations, but bona fide astrocytes have not been described in this system. Here we characterize a zebrafish cell type that is remarkably similar to mammalian astrocytes that derive from radial glial cells and elaborate processes to establish their territories at early larval stages. Zebrafish astrocytes associate closely with synapses, tile with one another and express markers, including Glast and glutamine synthetase. Once integrated into circuits, they exhibit whole-cell and microdomain Ca2+ transients, which are sensitive to norepinephrine. Finally, using a cell-specific CRISPR-Cas9 approach, we demonstrate that fgfr3 and fgfr4 are required for vertebrate astrocyte morphogenesis. This work provides the first visualization of astrocyte morphogenesis from stem cell to post-mitotic astrocyte in vivo, identifies a role for Fgf receptors in vertebrate astrocytes and establishes zebrafish as a valuable new model system to study astrocyte biology in vivo.


Astrocytes/physiology , Brain/growth & development , Ependymoglial Cells/physiology , Morphogenesis , Neurons/physiology , Spinal Cord/growth & development , Zebrafish/growth & development , Animals , Calcium Signaling , Neural Pathways/physiology , Receptor, Fibroblast Growth Factor, Type 3/physiology , Receptor, Fibroblast Growth Factor, Type 4/physiology , Synapses/physiology , Zebrafish Proteins/physiology
...